
Lecture 6 on Sept. 26

In the lecture today, we begin to study the so-called rational functions.

Definition 0.1. Given two polynomials P (z) and Q(z),

R(z) =
P (z)

Q(z)

is called a rational function.

Here are some remarks that we should have to know

Remark 0.2. If R1(z) and R2(z) are two rational functions, then R1 ±R2, R1R2, R1/R2 are also rational
functions. Moreover if we assume R(z) = P (z)/Q(z), then by quotient rule

R′(z) =
QP ′ − PQ′

Q2
,

which is still a rational function.

Remark 0.3. By the fundamental theorem of algebra, we can factorize P (z) and Q(z) as follows

P (z) = c1Πm
k=1(z − αk), Q(z) = c2Πn

j=1(z − βj).

Therefore

R(z) =
P (z)

Q(z)
=
c1
c2

Πm
k=1(z − αk)

Πn
j=1(z − βj)

. (0.1)

Applying cancellation to the above quotient, we know that we can always assume αk are different from βj.
In other words

{αk : k = 1, ...,m}
⋂
{βj : j = 1, ..., n} = ∅.

before proceeding, let us study how to write a rational function into the sum of partial fractions. One
should only follow the guideline below.

Step 1. Assuming R(z) = P (z)/Q(z), we use long division to rewrite R(z) as

R(z) = G(z) +H(z). (0.2)

here G(z) is a polynomial while H(z) is a real (proper) rational function. Here we mean a rational function
proper if the order of the nominator polynomial is smaller than the order of the denominator polynomial.
Notice that if H is proper then H(∞) = 0;

Step 2. Assuming β1 ... βn are n distinct roots of the polynomial Q, we consider the rational func-
tion H(βj + 1

w ) for each j = 1, ..., n. If H(z) is proper in terms of variable z, then H(βj + 1
w ) must not be

proper in terms of variable w. Therefore we can do long division for H(βj + 1
w ) and show that

H(βj +
1

w
) = Gj(w) +Hj(w). (0.3)

where Gj is a polynomial of w and Hj is a proper rational function. Using this Gj and G from the first step,
we can write

R(z) = G(z) +
∑
j

Gj(
1

z − βj
) + C,

1



where C is a constant. This is the so-called sum of partial fractions for R(z).

Step 3. Now we determine the constant C. Since Gj in Step 2 is a polynomial, then it has a constant term
denoted by C(Gj). C equals to −

∑
j C(Gj).

In fact, by Remark 0.2, we know that

R̃(z) = R(z)−G(z)−
∑
j

Gj(
1

z − βj
)

must be a rational function. when z 6= βj for all j = 1, ..., n, then R(z) ,G(z) and Gj(1/(z − βj)) are all

finite complex numbers. Therefore R̃(z) is finite. Letting β be one of complex numbers in {βj}, then by
(0.2) we know that

R̃(β) = H(β)−Gj∗(
1

β − βj∗
)−

∑
j such that βj 6= β

Gj(
1

β − βj
) (0.4)

Here j∗ is the index such that βj∗ = β. Supposing that z = βj∗ + 1/w, by (0.3), we have

H(z) = Gj∗(
1

z − βj∗
) +Hj∗(

1

z − βj∗
)

Clearly it holds

H(β)−Gj∗(
1

β − βj∗
) = Hj∗(

1

β − βj∗
).

Since Hj∗ is proper, therefore we have

Hj∗(
1

β − βj∗
) = Hj∗(∞) = 0.

Applying the above two equalities to (0.4), we know that R̃ is also finite at β. Therefore R̃ is a rational
function such that R̃(z) is finite for all z in C. Such rational function can only be a polynomial. Furthermore
by the fact that

R̃(z) = H(z)−
∑
j

Gj(
1

z − βj
),

we know that at ∞,

R̃(∞) = H(∞)−
∑
j

Gj(0) = −
∑
j

Gj(0).

Here the fact that H is proper is used. The above arguments show that R̃ is a polynomial and must be finite
at ∞. Such polynomial can only be a constant. Up to now we have shown that

R(z) = G(z) +
∑
j

Gj(
1

z − βj
) + C.

Applying (0.2) to the above equality, we know that

H(z) =
∑
j

Gj(
1

z − βj
) + C.
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Therefore by the fact that H is proper, we have

0 = H(∞) =
∑
j

Gj(
1

∞
) + C =

∑
j

Gj(0) + C =
∑
j

C(Gj) + C,

where C(Gj) is the constant term of the polynomial Gj . Hence it follows that

C = −
∑
j

C(Gj).
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